Package: agfh 0.2.1
agfh: Agnostic Fay-Herriot Model for Small Area Statistics
Implements the Agnostic Fay-Herriot model, an extension of the traditional small area model. In place of normal sampling errors, the sampling error distribution is estimated with a Gaussian process to accommodate a broader class of distributions. This flexibility is most useful in the presence of bounded, multi-modal, or heavily skewed sampling errors.
Authors:
agfh_0.2.1.tar.gz
agfh_0.2.1.zip(r-4.5)agfh_0.2.1.zip(r-4.4)agfh_0.2.1.zip(r-4.3)
agfh_0.2.1.tgz(r-4.4-any)agfh_0.2.1.tgz(r-4.3-any)
agfh_0.2.1.tar.gz(r-4.5-noble)agfh_0.2.1.tar.gz(r-4.4-noble)
agfh_0.2.1.tgz(r-4.4-emscripten)agfh_0.2.1.tgz(r-4.3-emscripten)
agfh.pdf |agfh.html✨
agfh/json (API)
NEWS
# Install 'agfh' in R: |
install.packages('agfh', repos = c('https://martenthompson.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 1 years agofrom:61b98cccbc. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 16 2024 |
R-4.5-win | OK | Nov 16 2024 |
R-4.5-linux | OK | Nov 16 2024 |
R-4.4-win | OK | Nov 16 2024 |
R-4.4-mac | OK | Nov 16 2024 |
R-4.3-win | OK | Nov 16 2024 |
R-4.3-mac | OK | Nov 16 2024 |
Exports:adj_profile_likelihood_theta_var_makeradj_resid_likelihood_theta_var_makeragfh_theta_new_predanderson_darlingbeta_err_gencramer_vonmisesgamma_err_genhb_theta_new_predkolmogorov_smirnovmake_agfh_samplermake_gibbs_samplermap_from_densitymsenull_genresid_likelihood_theta_var_makerRM_beta_eblueRM_theta_eblupRM_theta_new_predRM_theta_var_moment_estshapiro_wilktest_u_normaltheta_var_est_grid
Dependencies:clicolorspacefansifarverFNNggplot2gluegoftestgtableisobandkernlabKernSmoothkslabelinglatticelifecyclemagrittrMASSMatrixmclustmgcvmulticoolmunsellmvtnormnlmepillarpkgconfigpracmaR6RColorBrewerRcpprlangscalestibbleutf8vctrsviridisLitewithr